Sarcopenia - a Regulatory Perspective

Dragos Roman, M.D.
Team Leader
Division of Metabolism and Endocrinology Products,
Office of New Drugs, Center for Drug Evaluation and
Research, FDA

May 11, 2012
The views expressed in this talk are those of the author, not of the FDA
Objective

• Describe several regulatory requirements as they relate to:
 – definition of an indication
 – current evidentiary standard for drug approval

• Highlight regulatory challenges to a sarcopenia indication:
 – definition of sarcopenia
 – relationship between definition and indication(s)
 – criteria for patient population selection
 – endpoint selection (Phase 2 and 3 in particular)
 – clinically meaningful benefit
• Indication
• Patient selection and clinical endpoints
• Registration clinical trials
• Indication
• Patient selection and clinical endpoints
• Registration clinical trials
Sarcopenia and Related Indications

- No approved “sarcopenia” indication
- Several anabolic products have cachexia or cachexia-like indication(s);
 examples:
 - Oxandrin (1964): “adjunctive therapy to promote weight gain after weight loss […]”
 - Serostim (1996): “treatment of HIV patients with wasting or cachexia […]”
- Content of indications reflect disease understanding and scientific thinking at the time:
 - broader and less specific in the 60s
 - disease-specific in the 90s
- None defines a specific degree of muscle impairment, a qualitative or quantitative feature of muscle structure or function.
- Sarcopenia (indication) is new territory for the FDA
Indication – Regulatory Definition

• CFR 201.57(*Full prescribing information*):
 “This section must state that the drug is indicated for the treatment, prevention, mitigation, cure, or diagnosis of a recognized disease or condition, or of a manifestation of a recognized disease or condition, or for the relief of symptoms associated with a recognized disease or condition.”

• Is sarcopenia a recognized disease or condition?
Is sarcopenia one indication?

• Age-related sarcopenia (geriatric syndrome)
• Disease-specific sarcopenia: reduction in muscle mass and muscle functioning in specific conditions (e.g. COPD, etc.)
• Disuse atrophy or improvement of physical function after orthopedic surgery or casting
Sarcopenia nomenclature

• Anatomic (low muscle mass) – sarcopenia

• Functional (low strength) – dynapenia

• Contextual (frailty) – sarcofrailty?
Sarcopenia vs. cachexia

Sarcopenia
- low muscle mass
- decreased strength
- chronic inflammation
- nutritional deficiencies

Cachexia
- low muscle mass
- decreased strength
- chronic inflammation
- nutritional deficiencies
Disease and Indication

• **Since the indication and definition of sarcopenia are closely related, there is a need for a clinically meaningful definition of disease**
 – not an artificial numerical concept that has minimal relevance for a practitioner
 – the indication has to result in labeling that is clear and useful for the practitioner
 – favors function over structure, improvement of everyday life activities over clinical research measurements and biomarkers
 – since sarcopenia is likely a continuum (from close to normal to extremely severe) there is a need for quantitative criteria for identifying patients with different degree of severity (different risk/benefit)

• **Without a generally accepted definition, the incidence, prevalence, and public health impact of sarcopenia cannot be assessed accurately**
Sarcopenia Indication

- If laboratory tests or physical performance/strength measurements are used to define the indication, ideally they should be widely available and easy to perform in a clinical setting.
- Examples:
 - Diabetes: fasting plasma glucose or oral glucose tolerance test, HbA1C
 - Obesity: BMI
 - Osteoporosis: DXA scan
 - Hypertension: blood pressure
Recognition of “sarcopenia” as a medical condition and an evidence-based disease definition are essential for a sarcopenia indication(s).
Recognition of “sarcopenia” as a medical condition and an evidence-based disease definition are essential for a sarcopenia indication(s).

At which point does the gradual decline in muscle mass and function due to chronological aging become a disease instead of a manifestation of normal aging?
“Prevention” vs. “Treatment” Indication

- very different indications
- different objective for clinical development
- different patient populations (healthier vs. sicker)
- may require different efficacy endpoints or different thresholds for the same endpoint
- different size of trials for efficacy (powered for different effects) regardless of safety considerations
- different risk/benefit decisions
- likely very different clinical development programs
“Prevention” vs. “Treatment” Indication

- very different indications
- different objective for clinical development
- different patient populations (healthier vs. sicker)
- may require different efficacy endpoints or different thresholds for the same endpoint
- different size of trials for efficacy (powered for different effects) regardless of safety considerations
- different risk/benefit decisions
- likely very different clinical development programs
- For prevention having accurate knowledge of the natural history of the disease is paramount
• Indication
• Patient selection and clinical endpoints
• Registration clinical trials
Patient Selection

• Patient population selection will depend on disease definition which will impact:
 – type of indication(s) sought
 – specific quantitative criteria used for definition of the indication
 – age at enrollment
 – duration of intended treatment
Inclusion/exclusion criteria

• should reflect drug-specific safety concerns that may result from the preclinical program
• could be tailored to the stage of drug development
 – more restrictive in the Phase 2 program
 – broader in the Phase 3 program
• should differentiate between “sarcopenia” and cachexia, malnutrition, chronic conditions that result in muscle loss secondarily
• should ensure that weakness is related to muscle function rather than the overall health status
• may need to exclude co-morbid conditions and medications that may interfere with muscle strength and physical performance
Endpoint Selection

• **Endpoint selection will depend on disease definition**
• The endpoints should be consistent with the condition and meaningful for the indication(s) sought
• Pharmacodynamic endpoints in Phase 1-2 trials:
 – Drug-specific
 • IGF-1 for marker of GH function for GH, GHRH
 – General
 • Muscle strength/function
 • Functional performance
• Different drugs
 – may have different mechanisms of action
 – may require different endpoints/biomarkers
 – all need to confer in the end a clinically meaningful benefit
Endpoint Selection

• Functional endpoints are naturally more informative than structural endpoints
 – e.g. limitations of lean body mass (LBM)
 • may be an appropriate endpoint in Phase 2 trials along with a wide range of endpoints but only a secondary endpoint for phase 3 trials
 • improvements in LBM without clinically relevant functional improvements are not sufficient for an indication

• Across products a functional improvement should be not only statistically significant but **clinically relevant**

• How do sarcopenia endpoints relate to clinical outcomes (disease complications)?
 – decreased mobility
 – loss of autonomy
 – increased fracture rate
 – mortality
Clinical endpoints Phase 2-3

• List:
 – handgrip strength
 – gait speed
 – knee flexion/extension
 – short physical performance battery
 – stair climb
 – timed get-up-and-go test
 – appendicular body mass

• Which ones should be primary or secondary?
• Should be combination endpoints (e.g. co-primary endpoints)?
• Should a hierarchy of endpoints be used (algorithm that can be applied to clinical practice)?
Clinical endpoints Phase 2-3

- New endpoints need validation as do “old” endpoints when used in a new patient population or for a new indication
- Ideally should include measurements that can be widely applied in a clinical setting rather than a research setting
- Patient reported outcomes are anticipated to be important
Objective

• Indication
• Patient population and patient selection
• Clinical Endpoints
• Registration clinical trials
Level of evidence

• Phase 3 clinical trials must meet current evidentiary standard for approval: demonstrate **substantial evidence of effectiveness/clinical benefit** (21CFR 314.50)

• Substantial evidence of benefit = adequate and well-controlled clinical studies (§314.126)

• Studies have to be designed well enough so as to be able “to distinguish the effect of a drug from other influences, such as spontaneous change…, placebo effect, or biased observation” (§314.126)
Phase 3 program – Trial Design Issues

- Randomized, controlled (placebo) design
 - Should resistance training and nutrition optimization be background intervention for pharmacological interventions?
 - Should clinical trials include a physical activity optimization treatment arm?
- Clear and meaningful definition of the patient population (will be reflected in the label!)
 - inclusion and exclusion criteria
 - baseline characteristics
- Will need to demonstrate a meaningful clinical benefit
What is a clinically meaningful benefit?

- **Clear benefits:**
 - Fracture risk reduction
 - Reduction in mortality
 - Improvement in mobility and everyday functions (i.e. reversion or improvement of loss of autonomy) and quality of life without additional harm

- **No clear benefit:**
 - Improvement in a structural endpoint (e.g. LBM) or a biomarker of drug activity without functional performance improvement
 - Improvement of unknown significance in a functional performance endpoint (unrelated to fracture risk, mortality, etc.)
Phase 3 Program - Safety

- Safety is anticipated to be at least as important as efficacy because patients targeted are frail, have limited functional reserve, major disease-specific and/or age-specific comorbidities
- Safety needs to individualized
 - ICH E1 recommendations for chronically used drugs are a good start but size of clinical program will depend on findings in the animal toxicology program, mechanism of action of each specific drug, findings in the phase 1-2 program
- Likely different safety questions
 - for an already marketed drug with relatively well known safety profile (e.g. GH, testosterone) vs. a new molecular entity
 - for drugs in a better characterized class (GH and GHRH analogs) vs. a new class of drugs
- Clinical programs reflect the size of the target population
- Risk of abuse: this class(ses) of drugs could have a substantial impact outside the patient population of interest